
1

Java 7 Launch and Apache Lucene / Solr:

Crashes and File Corruption

due to Hotspot Bugs

http://s.apache.org/Java7LaunchBugBlog

Uwe Schindler
Apache Lucene Core Committer & PMC Member

uschindler@apache.org

@ThetaPh1

SD DataSolutions GmbH, Wätjenstr. 49, 28213 Bremen, Germany

Tel: +49 421 40889785-0, http://www.sd-datasolutions.de

http://s.apache.org/Java7LaunchBugBlog
http://s.apache.org/Java7LaunchBugBlog
mailto:uschindler@apache.org
http://twitter.com/thetaph1
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/

My Background

• I am committer and PMC member of Apache Lucene and Solr. My

main focus is on development of Lucene Java.

• Implemented fast numerical search and maintaining the new

attribute-based text analysis API. Well known as Generics and

Sophisticated Backwards Compatibility Policeman.

• Working as consultant and software architect for SD DataSolutions

GmbH in Bremen, Germany. The main task is maintaining

PANGAEA (Publishing Network for Geoscientific & Environmental

Data) where I implemented the portal's geo-spatial retrieval

functions with Lucene Java.

• Talks about Lucene at various international conferences like

ApacheCon EU/US, Lucene Revolution, Lucene Eurocon, Berlin

Buzzwords and various local meetups.

Agenda

• Short introduction about Apache Lucene /

Solr

• What happened? – Chronology

• Java 7 Crashes Eclipse – or “The Porter

Stemmer SIGSEGV Bug”

• Loop Unwinding – or “The Vint bug”

• How to debug hotspot problems

3

Short introduction

4

About Apache Lucene Core

• Apache Lucene Core is a high-performance, full-

featured text search engine library written entirely in

Java. It is a technology suitable for nearly any

application that requires full-text search, especially

cross-platform.

• Supports text tokenization, inverted indexing and

retrieval using the vector space model (VSM).

• Recently support for additional ranking models like Okapi

BM25 Model, Amati and Rijsbergen‘s DFR, Clinchant

and Gaussier's Information-based models for IR, Zhai

and Lafferty's language models.

5

Inverted

Index
Store

search

Results

retrieve

stored fields
TopDocs

Lucene’s data structures

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not

String comparison slow!

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not

String comparison slow!

Solution: Inverted index

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not Inverted index

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

c:\docs\shakespeare.txt:

To be or not to be.

c:\docs\einstein.txt:

The important thing is not to

stop questioning.

Query: not Inverted index

be

important

is

not

or

questioning

stop

to

the

thing

0

1

1

0

0

0 1

1

0

0

0 1

0

0

Document IDs

18

Segments in Lucene
• Each index consists

of various segments
placed in the index
directory. All documents
are added to new
in-RAM segment
files, merged to on-disk files after flushing.

19

Segments in Lucene
• Each index consists

of various segments
placed in the index
directory. All documents
are added to new
in-RAM segment
files, merged to on-disk files after flushing.

• Lucene writes segments incrementally and then
can merge them.

20

Segments in Lucene
• Each index consists

of various segments
placed in the index
directory. All documents
are added to new
in-RAM segment
files, merged to on-disk files after flushing.

• Lucene writes segments incrementally and then
can merge them.

• Optimized index consists of one segment.

Algorithms in Apache Lucene

• Lot’s of performance-critical tight loops

• Heavy disk I/O code

• Most implementation code is hand-

optimized, sometimes code duplication

because of same code working on

different datatypes

21

Apache Solr

• Enterprise search server based on

Apache Lucene Core

• REST API with support for various

input/output formats: XML, JSON, CSV

• Since version 3.1 shares one source tree

with Apache Lucene 3.1 => same

version numbers, closer integration of new

features

22

CHRONOLOGY

What happened?

23

Chronology

• Java 7 Release Candidate released July 6,

2011 as build 147 (compiled and signed on June

27, 2011 – also the release date of OpenJDK 7

b147)

• Saturday, July 23, 2011:

– downloaded it to do some testing with Lucene trunk,

core test ran fine on my Windows 7 x64 box

– Installation of FreeBSD package on Apache’s Jenkins

“Lucene” slave => heavy testing started: various

crashes/failures:

24

Issues found

• Jenkins reveals SIGSEGV bug in Porter

stemmer (found when number of iterations were

raised) [LUCENE-3335]

• New Lucene 3.4 facetting test sometimes

produces corrupt indexes [LUCENE-3346]

• Small issue in ICU tests [LUCENE-3344, ICU bug

#8734]

• Test of WordDelimiterFilter fails [simple fix committed]

• Lot’s of Solr tests suddenly fail [SOLR-2673]

25

https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3344
https://issues.apache.org/jira/browse/LUCENE-3344
https://issues.apache.org/jira/browse/LUCENE-3344
http://bugs.icu-project.org/trac/ticket/8734
https://issues.apache.org/jira/browse/SOLR-2673
https://issues.apache.org/jira/browse/SOLR-2673
https://issues.apache.org/jira/browse/SOLR-2673

Excurse: If your tests randomly fail with Java 7

• JUnit uses
Class.getMethods()

to find all tests in a class

• This list is not explicitly

sorted in any order!

• Until Java 6 the methods

were returned in same

order as declared in

source file!

26

Excurse: If your tests randomly fail with Java 7

• JUnit uses
Class.getMethods()

to find all tests in a class

• This list is not explicitly

sorted in any order!

• Until Java 6 the methods

were returned in same

order as declared in

source file!

Repair your tests to not

rely on execution order
of @Test methods!

27

Excurse: If your tests randomly fail with Java 7

• JUnit uses
Class.getMethods()

to find all tests in a class

• This list is not explicitly

sorted in any order!

• Until Java 6 the methods

were returned in same

order as declared in

source file!

Repair your tests to not

rely on execution order
of @Test methods!

28

Chronology

• Saturday, July 23, 2011:

– Porter Stemmer SIGSEGV failure reported as

bug at Oracles bug tracker, bug invisible to

public [#7070134]

• Wednesday, July 27, 2011:

– Analyzed index corruption bugs

– Those were already reported to Oracle before

[#7044738, #7068051]

29

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7070134
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7070134
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7044738
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7068051

Chronology

• Monday, July 25, 2011:
– Directly contacted the hotspot developers on the

OpenJDK mailing list, they confirmed the bug about

Porter Stemmer and supplied a patch (thanks to Vladimir

Kozlov)

– Applied patch to OpenJDK installation on Apache

Jenkins server (patched FreeBSD package)

– All bugs fixed!
– Patch had fix for 3 bugs, which showed us the related bug numbers =>

fixed the corruption issues

30

WARNING !!!

• Also Java 6 affected!
(some time after the only stable version 1.6.0_18)

• Optimizations disabled by default, so:

31

Don’t use -XX:+AggressiveOpts

if you want your loops behave correctly!

//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg
//upload.wikimedia.org/wikipedia/commons/2/24/Warning_icon.svg

Chronology

• Thursday, July 28, 2011:
– Oracle released JDK 7 to public

– Package was identical to release candidate (Windows

EXE signature dated June 27, 2011)

32

mailto:announce@apache.org

Chronology

• Thursday, July 28, 2011:
– Oracle released JDK 7 to public

– Package was identical to release candidate (Windows

EXE signature dated June 27, 2011)

33

mailto:announce@apache.org

Chronology

• Thursday, July 28, 2011:
– Oracle released JDK 7 to public

– Package was identical to release candidate (Windows

EXE signature dated June 27, 2011)

• Apache Lucene PMC decided to warn

users on web page and

announce@apache.org mailing list

34

mailto:announce@apache.org

The warning
Oracle released Java 7 today. Unfortunately it contains hotspot compiler optimizations, which miscompile

some loops. This can affect code of several Apache projects. Sometimes JVMs only crash, but in several

cases, results calculated can be incorrect, leading to bugs in applications (see Hotspot

bugs 7070134, 7044738, 7068051).

Apache Lucene Core and Apache Solr are two Apache projects, which are affected by these bugs, namely

all versions released until today. Solr users with the default configuration will have Java crashing

with SIGSEGV as soon as they start to index documents, as one affected part is the well-known Porter

stemmer (see LUCENE-3335). Other loops in Lucene may be miscompiled, too, leading to index corruption

(especially on Lucene trunk with pulsing codec; other loops may be affected, too - LUCENE-3346).

These problems were detected only 5 days before the official Java 7 release, so Oracle had no time to fix

those bugs, affecting also many more applications. In response to our questions, they proposed to include the

fixes into service release u2 (eventually into service release u1, see this mail). This means you cannot use

Apache Lucene/Solr with Java 7 releases before Update 2! If you do, please don't open bug reports, it is
not the committers' fault! At least disable loop optimizations using the -XX:-UseLoopPredicate JVM option

to not risk index corruptions.

Please note: Also Java 6 users are affected, if they use one of those JVM options, which are not enabled by
default: -XX:+OptimizeStringConcat or -XX:+AggressiveOpts.

It is strongly recommended not to use any hotspot optimization switches in any Java version without

extensive testing!

In case you upgrade to Java 7, remember that you may have to reindex, as the unicode version shipped with

Java 7 changed and tokenization behaves differently (e.g. lowercasing). For more information,
read JRE_VERSION_MIGRATION.txt in your distribution package!

35

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7070134
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7044738
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7068051
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3335
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3346
https://issues.apache.org/jira/browse/LUCENE-3346
http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2011-July/005971.html

Chronology:

Friday, July 29, 2011

36

Chronology:

Friday, July 29, 2011

37

Chronology:

Friday, July 29, 2011

38

Chronology:

Friday, July 29, 2011

39

Chronology:

Friday, July 29, 2011

40

Chronology:

Friday, July 29, 2011

41

Further analysis the week after

42

Further analysis the week after

43

Further analysis the week after

44

Further analysis the week after

45

Further analysis the week after

46

Further analysis the week after

47

Further analysis the week after

48

Further analysis the week after

49

Oracle’s offers
• Dalibor Topic (Oracle) explained Oracles plans for

managing bugs in his blog: “A bugs live”
(http://robilad.livejournal.com/87097.html):

– They are trying to improve the bug reports coming in over the

web interface

– Information how bug fixes are merged from Java 8 to Java 7,

special cases for Hotspot

• Oracle offers Java CAP (Compatibility and Performance

Program):

– early access to Java builds to check compatibility

– support technican assigned

• Oracle offers almost weekly preview builds of JDK 7u2

and 6u29 on http://jdk(7|6).java.net

50

http://robilad.livejournal.com/87097.html
http://robilad.livejournal.com/87097.html
http://jdk(7|6).java.net/

THE PORTER STEMMER

SIGSEGV BUG

Java 7 Crashes Eclipse…

51

What’s wrong with these methods?

52

Let’s try it out!

Conclusion: Porter Stemmer Bug

• Less serious bug as your virtual machine

simply crashes. You won’t use it!

• Oracle made bug report “serious”, as this

affects their software reproducible to

everyone.

• Can be prevented by JVM option:
-XX:-UseLoopPredicate

53

THE VINT BUG

Loop Unwinding

54

What’s wrong with this method?

55

What’s wrong with this method?

56

Conclusion: Vint Bug

• Serious data corruption: Some methods using loops

silently return wrong results!

• Bug already existed in Java 6

– appeared some time after 1.6.0_18, enabled by default

– is prevented since Lucene 3.1 by manual loop

unwinding (helps only in Java 6)

• Cannot easily be reproduced, Oracle assigned

“medium” bug priority – was never fixed in Java 6.

• Problems got worse with Java 7, only safe way to

prevent is to disable loop unwinding completely, but

that makes Lucene very slow.

57

Conclusion: Vint Bug

• Serious data corruption: Some methods using loops

silently return wrong results!

• Bug already existed in Java 6

– appeared some time after 1.6.0_18, enabled by default

– is prevented since Lucene 3.1 by manual loop

unwinding (helps only in Java 6)

• Cannot easily be reproduced, Oracle assigned

“medium” bug priority – was never fixed in Java 6.

• Problems got worse with Java 7, only safe way to

prevent is to disable loop unwinding completely, but

that makes Lucene very slow.

58

HOW TO DEBUG HOTSPOT

PROBLEMS

Hands-On

59

First…

• Fetch some beer!

• Tell your girlfriend that you will not come to

bed!

• Forget about Eclipse & Co! We need a

command line and our source code…

60

Hardcore:

Debugging without Debugger

• Open hs_err file and watch for stack trace.
(if your JVM crashed like in Porter stemmer)

• Otherwise: disable Hotspot to verify that it’s

not a logic error! (-Xint / -Xbatch)

• Start to dig around by adding
System.out.println, assertions,...
Please note: You cannot use a debugger!!!

61

Digging…
• If you found a method that works incorrectly,

disable Hotspot optimizations for only that one:
-XX:CompileCommand=exclude,your/package/Class,method

– If program works now, you found a workaround!

– But this may not be the root cause - does not help at all!

• Step down the call hierarchy and replace exclusion

by methods called from this one.

• Open a bug report at Oracle!

• Inform hotspot-compiler-dev@openjdk.java.net

mailing list.

62

Let’s try it out!

Recommendation

• Test methods with tight loops in real-world

scenarios

– Large data structures that require lots of iterations

– Lower the compilation threshold during tests

• Test -client and -server!

• Use randomness during testing

– Reproduceable random seeds

– See Lucene’s modified JUnit test framework

63

64

Thank You!

